

University Alaska Fairbanks

2011 SAE Clean Snowmobile Challenge

Electric Snow Machine Design Presentation

Presented by: Michael Golub, Amanda Mertes

Potential Users

National Science Foundation in polar regions with extreme sensitivity to pollution

- Rural Villages for transport to work, checking trap lines, substance hunting and fishing.
- National Park Service to preserve the environment.

UAF Goals for CSC 2011

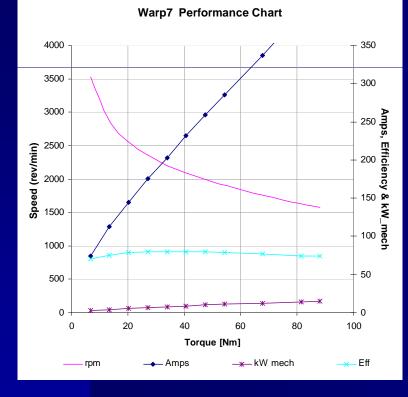
	Challenge	UAF	UAF				
Category	Record	Goal	Obtained				
		30 km					
	29 km	(18.6	>30 km				
Range	(18 mi)	mi)	(18.6 mi)				
		227 kg					
	226 kg*	(500	<233 kg				
Weight	(498 lb)	lbs)	(514 lbs)				
		2.6 kN					
Drawbar	2.56 kN	(590	>2.6 kN				
Pull	(575 lbf)	lbf)	(590 lbf)				
Noise**	65 dB	64 dB	<64 dB				
MSRP	\$14K	\$12K	<\$12K				
*With 2.4 kW h pack							

Strategy: "Better, Faster, Cheaper"

 $v_{101} \ge 4 \kappa v_{11} pack$

**With studded track

Priority Design Goals


- Prevent contaminating/polluting samples and environment
- Affordable for villages to reduce necessary quantity of gasoline (~\$10/gal)
- Practicality, Range, and Performance
- Use of renewable energy to recharge reduces emissions from a diesel generator.

Design Strategy

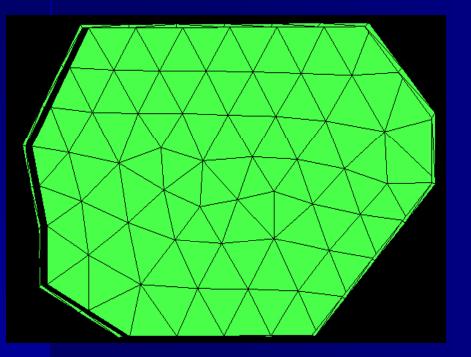
KISS (Keep It Simple Stupid)
8kWh runs at least 14 miles
Li-Po batteries for maximum power with minimal weight
Low Cost yet durable
Easily repeatable with available components

Motor

NetGain WarP7 DC motor 181mm (dia.) x 425mm weighs 45.5 kg Continuous power of 15.47 kW 47 Nm torque @ 32 km/h 2,100 rev/min using 48 V & 230 A

Batteries

- Lithium-ion Polymer (Li-Po) x72
- 22.2 V nominal voltage, 5 Ah
- 9 paralleled strings of 8 batteries each
- 177.6 V total pack size
- Attractive mass energy density, availability, and cost.
- Low resistance (0.003 ohm) allows motor to draw more power
- Protected by Chargery Power BM6 Battery Management System (BMS)


Battery Chemistry Examined

		Nickel		Lithium-ion			
	Lead				LiMn _x Ni _y		LiPoly
Criteria	Acid	NiCd	NiMH	LiCoO ₂	Co _z O ₂	LiFePO₄	Hybrid
Mass Energy Density (W·h/kg)	35	40	75	180	160	110	140
Volume Energy Density (W·h/L)	68	50	200	250	250	220	286
Power Density (W/g)	0.18	0.15	0.7	3	3	3	4.2
Cycle efficiency (% charge/discharge)	70	70	70	95	95	95	95
Self-discharge (%/month)	10	10	30	5	5	5	3
Cycle life (total cycles)	200	1000	500	500	500	2000	1000
Current cost (US Dollar/W·h)	\$0.05	\$0.23	\$0.47	\$0.60	\$0.60	\$0.31	\$0.40
Nominal Voltage	2.1	1.2	1.2	3.7	3.7	3.2	3.7
BMS Required	No	No	No	Yes	Yes	No	Yes
Environmental	Poor	Bad	Cood	Average	Average	Cood	Good
Cost based on cycle life x W·h of Lead	1	0.7	1.3	1.75	1.75	0.2	.45

Battery Box

Used Computer modeling to design a polycarbonate battery box that *Safely* houses our batteries.

Altair HyperMesh Software

1/2 inch Polycarbonate:

- Young's modulus of 3.2x10^9 N/m
- density of 1.20 g/cm
- Withstand impact @ 20mph with 500 lbs of snowmobile compressing the box

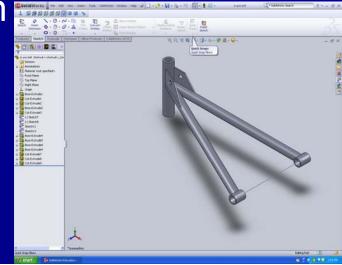
Controller

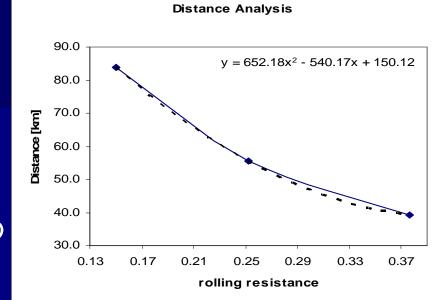
- Logysystems Controller 120/196
- Rated for 249 V & 550 A continuously
- Capable of 137 kW continuously
- Rated for -40 degrees Celsius
- 99% efficiency @ >73 degrees Celsius
- High volume Delta fans to ensure proper cooling
- Runs motor with Pulse Width Modulated @ 14 kHz

Service

- Less moving parts then IC for service
- Only two fluids (brake fluid & bearing grease)
- Longlife batteries (1500 cycles)
- Simple drivetrain with two Gates BX34 V-belts
- Stock hydraulic disk brake system

Cost


MSRP \$12K
 Potential savings
 – Lower Maintenance Costs
 – Lower energy cost than IC


ZE Tundra Features

- Lighter, total weight 504 lbs
- 18" Fox Airshocks
- Widened ski stance for stability which is safer and easier to drive (for novice)
- Estimated 11% reduction in CO2 emissions & 10% reduction in Greenhouse gases

Test Results

 Tow force of 590 lbs
 On a 0.83 mi track @ constant speed of 20 mph range is 18.6 miles.

 >65 dB with Kimpex track on light powder snow

Conclusion

This is our second year in development of the Skidoo Tundra prototype.

We are happy with the DC motor setup because it performs to our expectations and is affordable.

Our hybrid Li-Poly batteries outperform their competition; however we are still searching for batteries with higher mass energy density (semi-conductor, sulfur, LiSnZn, ...)