Clean Snowmobile Challenge Fall 2012

Group Members

Burton Fischer

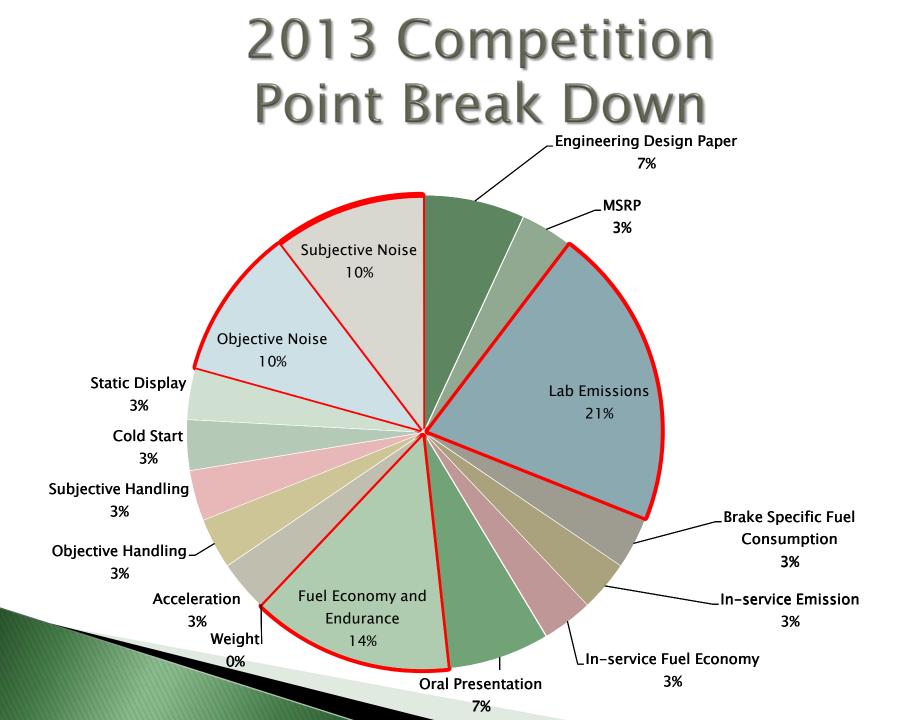
Matt Lewis

Justin Juckem

Neal Eidenschink

<u>Advisors</u>

Dr. Alan Kallmeyer Dr. Robert Pieri Andy Blackmore


Outline

- ObjectiveConstraints
- Design
 - Engine Selection
 Engine Modification
 Fuel System
 Forced induction
 Intercooler
 - Water Methanol

SAE International

Emissions
Oil Pan
Remote Oil Filter
Steering
Other Modifications

Objective

- Reduce Emissions
- Reduce Noise
- Increase Power
 Output
- Increase Economy
- Improve Handling
- Reduce weight
- Maintain Reliability
- Maintain Safety

Constraints

- At lease 100 miles to a tank of fuel
- Enough power to accelerate 500ft in 12 sec, but not over 130HP
- Perform at subzero temperature
- Need to keep the chassis in near stock conditions
- Low weight
- Produce less emission that factory engine
- Safety features as priority

Engine Selection

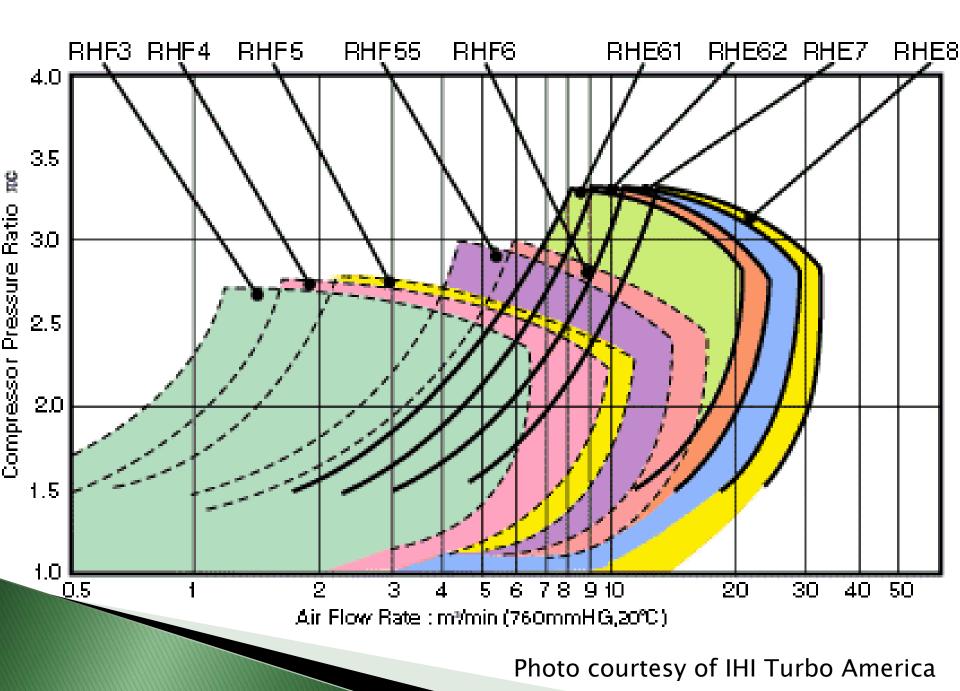
- Kubota D902
 3 cylinder diesel
- Common Rail vs.
 Mechanical
- Testing
- Final Selection

Photo Courtesy of Kubota Engine America

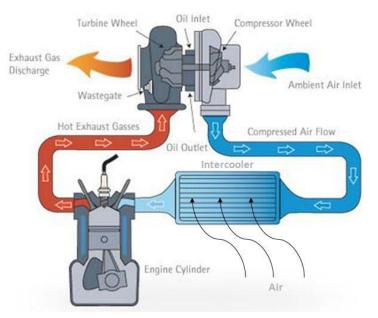
Photo Courtesy of www.commonrail.info

Fuel System

- Mechanical Fuel Injection
- Modify Injection Pump
- Help both team and competition constraints
 - Better Economy
 - Higher Power
- Inline Fuel Pump
 - Simple Operation
 - Effective


Forced Induction

- Single Turbo
 Configuration
- Less Turbo Lag
- Increased Economy
- Increased Power
- Helps with team and competition constraints

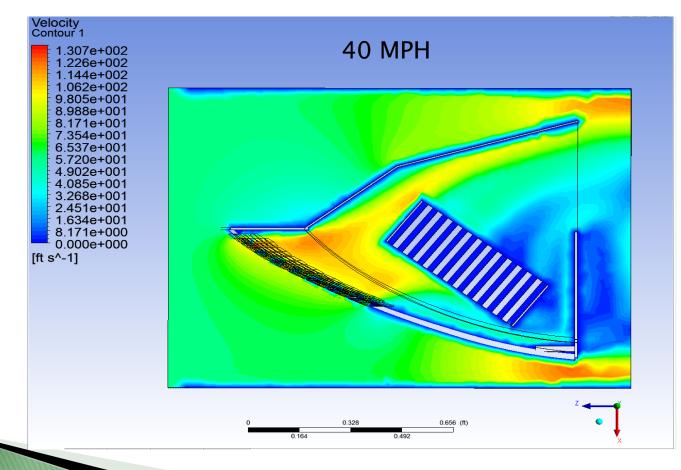


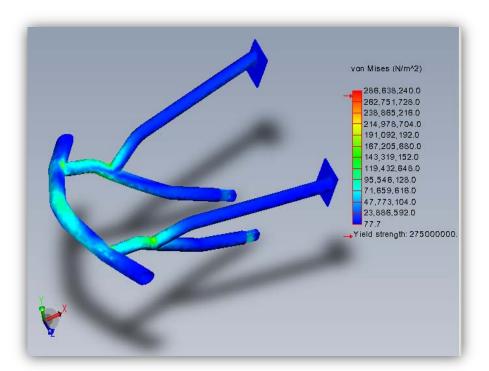
Intercooler

Purpose

 Cool compressed, heated intake air charge

- Reason for Change
 - Smaller Core
 - Insufficient welds
- New design




Radiator Placement

Maximize Air Flow

Front Bumper

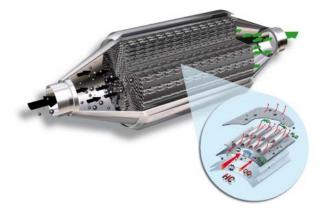
- Front bumper was modified
- Vertical force applied
 - 750 lbs
 - ° FS 1.25

Water Methanol Injection

Purpose

- Power
 - increased Hp by 10%
- Emission
 - Reduces intake temps
 - NOx production
 - Reduces soot production

Photo courtesy of AEM Electronics



Emissions Equipment

- 3 types of Emission Control
 - Filtration
 - Reaction
 - Prevention
- Filtration method Selected
 - All emission methods require a DOC and DPF
 - Effectiveness
 - High hydrocarbon, carbon oxides, nitrous oxides and particle matter filtration
 - Low backpressure

Oil Pan Design

- Clearance issues
- Wet sump vs. Dry sump
- Increased volume
- Maintenance

Oil System Additions

Remote Oil Filter

- Improved maintenance
- Greater accessibility


Courtesy of westerbeke.com

Steering

- Steering used last year
 - Mechanical steering shaft
 - Under engine without modifying original chassis
- Experienced clearance issues
- Explored hydraulic system
 - Hydraulic actuator as fluid driver
 - Hydraulic cylinder options
- Revert to original design

Other Modifications

- Lizard Skin rubber coat on chassis
- Foam engine compartment
- Exhaust exit in tunnel
- Lightweight track
- Lightweight and better handling suspension
- Pro-steer Skis

Questions?

References

- Mike Ruth of Cummins INC.
- http://www.aemelectronics.com/
- http://www.kubotaengine.com/index.html
- http://www.emitec.com/
- victorylibrary.com
- westerbeke.com

Points Breakdown

2013 Points Break-Down	<u>Points</u>
Engineering Design Paper	100
MSRP	50
Lab Emissions	300
Brake Specific Fuel	
Consumption	50
In-service Emission	50
In-service Fuel Economy	50
Oral Presentation	100
Fuel Economy and Endurance	200
Weight	0
Acceleration	50
Objective Handling	50
Subjective Handling	50
Cold Start	50
Static Display	50
Objective Noise	150
Subjective Noise	150

Turbo Calculations

A/F	Intake O2	Vol Eff	RPM	Disp	ІМТ	Mdot fuel	Mdot air	O2 stack	Mdot EGR	Mdot Stack	Mdot charge	EGR	Pint
[none]	[%]	[none]	[rpm]	[L]	[deg F]	[lb/hr]	[lb/min]	[%]	[lb/min]	[lb/min]	[lb/min]	[%]	[bar abs]
24	20.79	0.9	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.45
24	20.79	0.88	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.51
24	20.79	0.87	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.54
24	20.79	0.86	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.57
24	20.79	0.85	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.60
24	20.79	0.84	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.63
24	20.79	0.83	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.66
24	20.79	0.82	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.69
24	20.79	0.81	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.73
24	20.79	0.8	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.76
24	20.79	0.79	3000	0.98	50	22	8.80	8.23	0.00	9.17	8.80	0.00	2.80