Michigan Technological University

Energizing the Future: Rear Driven E-Rush

Zero Emissions Team Leader: Mike Rittenour

Zero Emissions Team Member
Davin Peterson

March 10th, 2011

Topics for Discussion

- Design Intent
- Chassis and Key Features
- Electrical Design
- Future Developments
- Conclusions and Questions

Design Intent

- Maximize Range
- Reduce Noise
- Maximize Pulling Capability
- Reduce Weight
- Maintain Ride ability
- Reasonable Price
- Serviceability

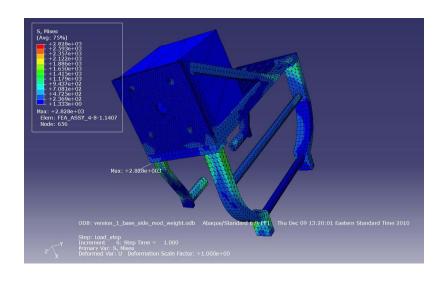
Chassis Update

- 2010 Polaris Rush
 - Lightweight 2-StrokeChassis
 - Improved Ergonomics
 - Modern Styling and Design
 - Innovative ProgressiveRate Rear Suspension



Key Features

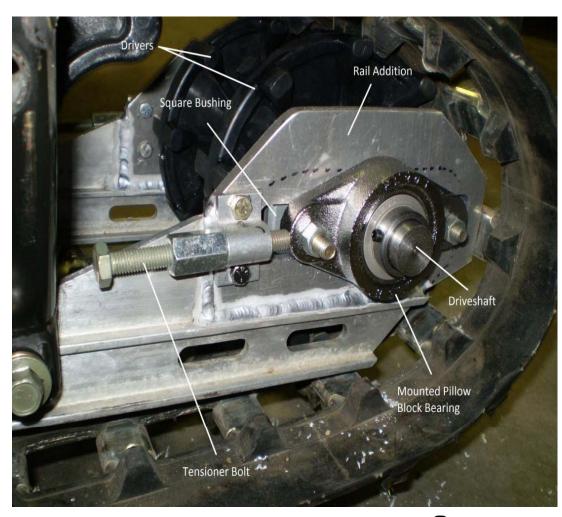
- Innovative Rear drive design
- Polaris Pro-Ride rear suspension



Fueling Performance through Innovation

Motor Mount

	Max Stress (psi)	Max Displacement (in)	Yield Stress (psi)	Factor of Safety	Weight
Design 1	3,106	0.01136	36,000	11.5	48.06
Design 2	2,726	0.001636	36,000	13.2	36.26
Mod Design 2	2,828	0.001871	36,000	12.7	25.75



Rear Drive

- Implemented for increased driveline efficiency
- Puts the straight portion of track in tension
- Creates more options for battery packaging

Electrical Design

- •Electrical design goals
 - Simplicity
 - Efficiency
 - Effectiveness
- Electrical DriveSystem Packaging
 - Motor, Motor
 Controller, Information
 Display Packaged
 together
- Energy Storage System
 - Batteries, Battery
 Charger, and Charging
 Management System
 Packaged Together

Motor

- Hi-Performance EVs AC-20
- AC Induction motor
- Can Package in rear of snowmobile
 - Peak HP 75
 - Peak TQ 105 ft lbs
 - Motor Weight 53lbs

Motor Controller

- Curtis 1238
- Fully Programmable
- Inverts DC voltage to AC voltage in the controller
- Cooled by snow on tunnel

Batteries

- Thundersky 40 Ahr 3.3VBatteries
- Lithium Iron Phosphate Chemistry
- •60 Batteries
- •96V Operating Potential
- •7.68 kWhr
- •12V system operates relays, headlights, and tailights
- •7 Different boxes to distribute weight

Charging System

- On Board Charging System
 - Linked to battery management system
 - Battery management system automatically operates charger when plugged in
 - Can plug in and charge anywhere that 120 AC power is available

Future Developments

- Refine Drive system
- Relocate the brake to the rear driveshaft

- Change the front attack angle for improved efficiencies
- Redesign battery packs to accommodate serviceability and packaging
- Testing on snow to improve efficiency and pulling capability

Conclusion

- Converted a Polaris Rush to rear drive
- Testing in the future
- Significant weight reduction
- Improved rider ergonomics and rider comfort
- Reasonable MSRP

-Questions-

