

Wisconsin–Rotax ACE 674 (WRACE 674)

SAE Clean Snowmobile Challenge
Design Presentation 2018

University of Wisconsin-Madison

Presenters: Andrew Wild and Matthew Massman

1

Team Management

- Joined SAE in 1939
- Clean Snowmobile Team has competed since 2002
- Team Structure
 - President/Electrical Lead James Gerdes
 - Mechanical/Emissions Lead Matt Massman
 - Controls/Calibration Lead Andrew Wild

Team Outreach

- Fundraising and Sponsor Relations
 - SAE Milwaukee Chapter Meeting
 - Annual Presentation at UWGP
 - Shop tours for sponsors
- Community Outreach
 - Engineering Bash
 - Homecoming Parade
 - Engineering Expo

Design Considerations:

Our 2015 Survey of 25 Wisconsin Snowmobile Clubs

- Customers Want:
 - Trail Handling
 - Fuel Economy
- Historical Best Sellers
 - Ski-Doo Rev XP 600 SDI
 - Polaris Rush 600

Characteristic	Rank
Handling	1
Price	2
Fuel Economy	3
Acceleration	4
Emissions	5
Sound	6

Engine Selection

Focus Points:

- Fuel Economy
- Engine Out Emissions
- Adequate Power

Base Snowmobile	Power (kW)	Weight (kg)	Fuel Economy	Emissions (g/kW-hr)		
			(km/L)	HC	CO	NOx
Ski Doo ACE 600	42	41.1	12.5	6	90	N/A
Ski Doo ACE 900	64.5	51.8	10	6	75	N/A
Ski Doo 1200 4tec	92	60	8.85	8	130	N/A
Polaris 600 Cleanfire	97	35	5.3	60	175	N/A

^{*}Manufacturer reported values

^{*}Polaris represents Two-Stroke for comparison

Chassis Selection

2015 Ski-doo MXZ Sport

- Lightweight
- Rider-forward ergonomics
- Cost-effective
- New XS Chassis

Engine Management

- Woodward/Mototron PCM565
 - Automotive/Marine environments
 - -40 to 130 °C
 - 18 g Shock Load
- Submersible up to 3 meters
- MATLAB/Simulink engine modeling
- MotoHawk automatic code generation

Design Goals for 2018 CSC

- Rectify engine cooling issues
- Reduce noise levels
- Improve cold start reliability
- Raise catalytic efficiency

8

Head Gasket Replacement

- Struggled to maintain a steady operating temperature during 2017 CSC
- Discovered leaky head gasket after competition
- Sourced a different Cometic head gasket
- Maintained compression ratio of 12.05:1

EGR Cooler Modification

- Deduced that cooler had effect on cooling problems
- Altered cooler design from counter current flow to cocurrent flow

Noise Reduction

- 5th place in noise with 81.0 dBA in 2017
- Looked to attenuate chassis noise
- Tunnel vibrational data collected with accelerometer and analyzed using Fast Fourier Transform

Noise Reduction (cont.)

 LizardSkin sound control used to dampen tunnel

Cold Start Reliability

- Failed cold start in 2017
- Room for improvement in crank fueling control
- Over 50 cold start data logs collected and analyzed

Crank Fueling Changes

- Developed ethanol percentage based crank fuel multiplier code
- Calibrated base fueling table for E0
- Ethanol multiplier table tuned for optimal starting reliability

Cold Start Near Stall

- Sudden RPM drop at idle after cold starts
- Investigation revealed condensation froze EGR valve in place
- EGR Valve PID was experiencing I-term windup leading to overshoot

EGR Valve Enablement

- EGR valve thawed and overshot at 30-40°C ECT
- ECT-based EGR valve startup delay created
- Delay temperature calibrated to prevent sudden engine speed reduction

Catalyst Selection

 Lean to rich fuel oscillation around stolchiometric fueling led to use of three-way catalyst

	2018 Catalyst	2017 Catalyst	
Washcoat	W. C, Heraeus GmbH	W. C, Heraeus GmbH	
Substrate	Emitec Metal Honeycomb	Emitec Metal Honeycomb	
Diameter	92 mm	92 mm	
Length	168 mm	168 mm	
Foil thickness	0.03 mm	0.03 mm	
Density	400 cpsi	400 cpsi	
	Platinum 11.1 g/ft ³	Platinum 24.7 g/ft ³	
Loading	Palladium 55.6 g/ft ³	Palladium 45.2 g/ft ³	
	Rhodium 8.3 g/ft ³	Rhodium 4.1 g/ft ³	

Catalyst Summary

- Projected E-Score increase of 2.2 from testing
- Low NO_X conversion due to EGR

	НС	CO	NO_X	Projected E-Score
2017 Catalyst Efficiency	92.8%	86.8%	24.3%	203.7
2018 Catalyst Efficiency	99.9%	92.4%	34.2%	205.9

Dyno and Vehicle Testing

- Initial testing and calibration completed on dyno
- Over 350 miles of trail riding on 2018 design
- Used Vector CAN data logger

WRACE 674 Summary

- Low MSRP of \$10,700
- Increased peak torque from 44 to 53 N-m and power from 31 to 35 kW
- E-Score improved from 190 to 206

Acknowledgements

- All Sponsors
- Keweenaw Research Center/SAE International
- University of Wisconsin-Madison College of Engineering
- Advisors
 - Ethan Brodsky
 - Glenn Bower

References

[1] MTU KRC. 2018 Snow Challenge Logo. 2018. [Online] Available: http://www.mtukrc.org/images/SnowChall_Logo18_blueglow_sm.jpg [Accessed 23 02 2018].

[2] G. Nellis and S. Klein, *Heat Transfer*. Cambridge University Press, 2009.

[3] FFT Fast Fourier Transform. 2018. http://www.nti-audio.com/en/functions/fast-fourier-transform-fft.aspx [Accessed 23 02 2018]

Fast Fourier Transform

Catalyst Data

2017 Catalyst Data						
Mode	RPM	Torque (ft lb)	HC (ppm)	CO (ppm)	NO _X (ppm)	
1	6150	30.5	7.75	805.56	1587.64	
2	5200	20.0	0.00	648.83	723.17	
3	4650	13.5	0.49	224.41	124.66	
4	4000	8.0	152.38	829.41	18.69	
5	2000	1.0	65.44	370.58	26.16	

2018 Catalyst Data						
Mode	RPM	Torque (ft lb)	HC (ppm)	CO (ppm)	$NO_X(ppm)$	
1	6150	30.5	0.00	478.57	1588.52	
2	5200	20.0	0.00	559.04	392.20	
3	4650	13.5	1.18	0.00	105.92	
4	4000	8.0	0.00	725.00	12.78	
5	2000	1.0	0.00	5.95	29.17	