

Wisconsin-Rotax ACE 674 (WRACE 674)

SAE Clean Snowmobile Challenge Design Presentation 2016

University of Wisconsin-Madison

Presenters: Saager Paliwal and Kyle Karnick

DESIGN PROCESS AND ENGINE SELECTION

Design Considerations:

University of Wisconsin SAE Snowmobile Team

Survey of 25 Wisconsin Snowmobile Clubs

- Customers Want:
 - Trail Handling
 - Fuel Economy
- Historical Best Sellers
 - Ski-Doo Rev XP 600 SDI
 - Polaris Rush 600

Characteristic	Rank	% Valued			
Handling	1	100%			
Price	2	94.9%			
Fuel Economy	3	86.6%			
Acceleration	4	86.0%			
Emissions	5	73.2%			
Sound	6	65.5%			

Focus Points:

- Fuel Economy
- **Engine Out Emissions**
- **Adequate Power**

Base Snowmobile (kV	Power	er Weight (kg)	Fuel Economy	Emissions g/kW-hr)		
	(KVV)		(km/L)	HC	CO	NOx
Ski Doo ACE 600	42	40	12.3	8	90	N/A
Ski Doo ACE 900	67	55	10	8	90	N/A
Ski Doo 1200 4tec	97	64	7.2	6.2	79.9	N/A
Polaris FST	97	62	7.6	9	116	N/A

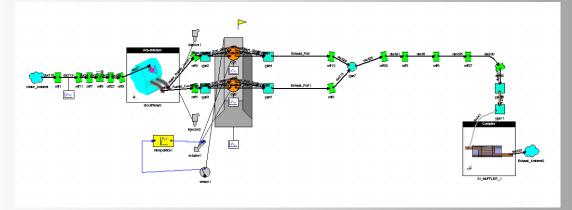
Engine Selection

*Manufacturer reported values

Chassis Selection

2013 Ski-doo MXZ Sport

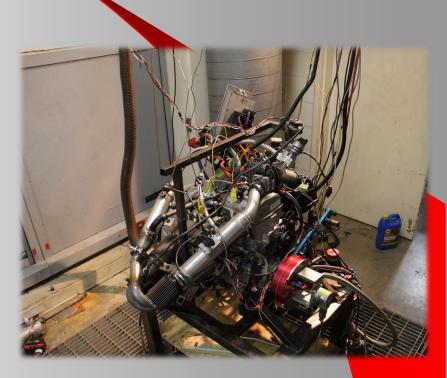
- Lightweight
- Rider-forward ergonomics
- SC-5 suspension
- Cost-effective



Powertrain Enhancements

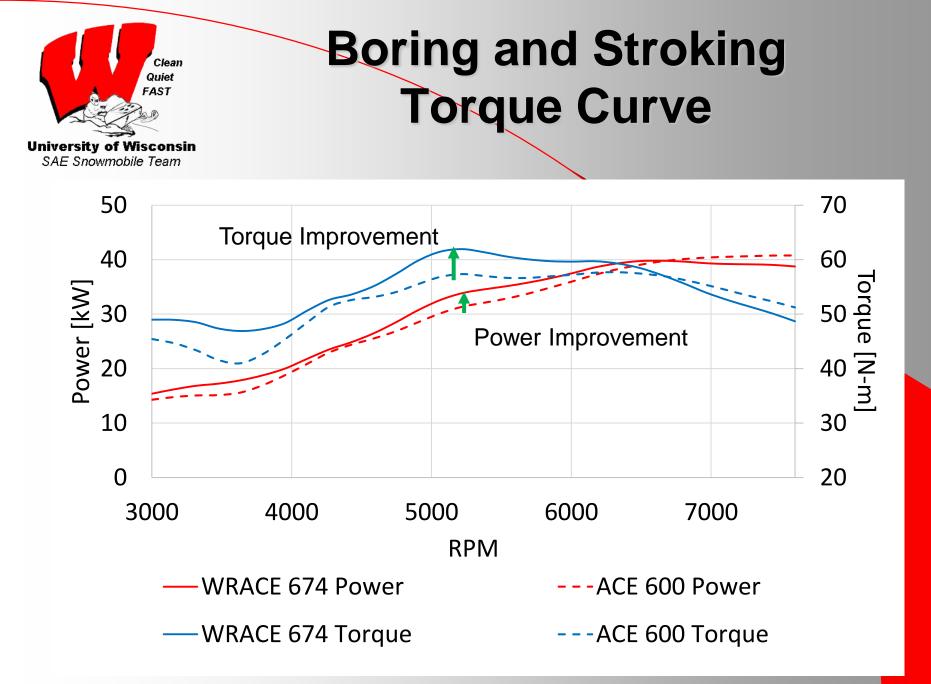
- University of Wisconsin SAE Snowmobile Team
 - 1-D CFD engine model
 - Increase in bore and stroke of engine
 - Ported engine head
 - Exhaust gas recirculation
 - Reduced exhaust backpressure
 - 40.4 kPa measured in 2015 resulting in ~2.5 kW pumping loss
 - Reduced to 13.1 kPa recovering ~1.6 kW power.

Engine Management


- Woodward/Mototron PCM565
 - Automotive/Marine environments
 - -40°- 130 °C
 - 18 g Shock Load
- Up to 3 Meters Underwater
- MATLAB/Simulink engine modeling
- MotoHawk automatic code generation
- Three way switching algorithm

Engine Calibration

- DYNOmite water brake dyno
- Heated wideband O₂ sensors + NO_X sensor
- Exhaust thermocouples
- DYNO Spark Plug pressure transducers
- Calibrated:
 - Spark advance
 - Fuel Injection Quantities
 - EGR flow rates
 - Closed loop fueling
 - Throttle control


Vehicle Calibrations

- Deceleration fuel cut and throttle curve
- Improved Acceleration
 - Tuned Throttle curve
 - EGR handling
- Improved handling through upgraded shocks

ENGINE IMPROVEMENTS: BORING AND STROKING

Process and Results

University of Wisconsin SAE Snowmobile Team

3 mm change in crank throw resulting in a stroke of 75.7 mm

Piston size – "square" engine 75 mm and 76 mm bores

75 mm piston for Honda CBR954RR

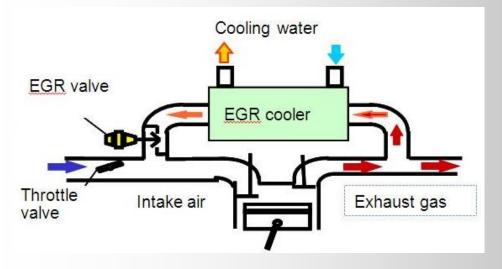
Modified piston dome for valve clearance and chamber geometry

Copper head gasket for desired compression ratio of 11.82 : 1

Stock Honda Piston

WRACE 674 Piston

ENGINE IMPROVEMENTS: EXHAUST GAS RECIRCULATION



Exhaust Gas Recirculation

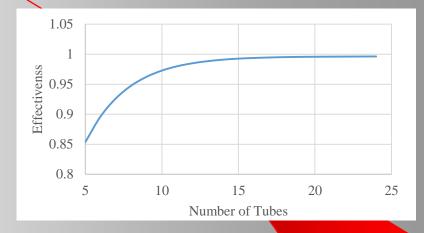
University of Wisconsin SAE Snowmobile Team

How it Works:

 Fraction of exhaust gas recycled through control valve to intake tubing

Valve Selection:

 Max flowrate measured to be 16.1 kg/hr



- Design Requirements:
 - 1. Maximum diameter of 64 mm
 - 2. Maximum length of 204 mm
 - 3. Cooling capacity of 3 kW
 - 4. Utilize engine coolant
- Vipertex enhanced surfaces

EMISSIONS AND NOISE REDUCTION

Engine Emissions

Three Way Catalyst Specifications				
W. C, Heraeus GmbH				
Emitec Metal Honeycomb				
92 mm				
168 mm				
0.03 mm				
400 cpsi				
Platinum 11.1 g/ft ³				
Palladium 55.6 g/ft ³				
Rhodium 8.3 g/ft ³				

Mode 3 NO_X Emissions

0% EGR 10% EGR

2164 ppm 328 ppm

85% Reduction NO_X Reduction with EGR

Continental NO_x Sensor

Engine Emissions

E-Score Formula:

$$E = \left[1 - \frac{(HC + NOX) - 1.5}{150}\right] * 100$$
$$+ \left[1 - \frac{CO}{400}\right] * 100 \ge 100$$

	WRACE 674	ACE 600
CO (g/kW-hr)	11.40	90*
HC (g/kW-hr)	0.382	8*
NO _× (g/kW-hr)	0.041	N/A**
E-Score	206.9	190

*Manufacturer reported values *Estimated for E-Score

Noise Reduction

University of Wisconsin SAE Snowmobile Team

- Lizard Skin Tunnel Liner
- Belt Drive
- Catalyst
- Sound Attenuation Material
- Low RPM clutch engagement

SAE 1161 A-Weighted Slow Response Sound:

66.7 dB ± 1.6 dB

Stock 2015 MXZ Tested: 71.1 dB ± 1.6 dB

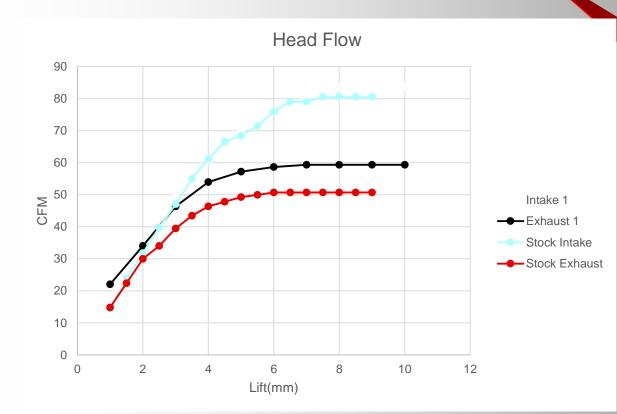
Lizard Skin Tunnel Liner

WRACE 674

- 50 N-m torque @ 5500 RPM
- 20+ mpgge
- E0 to E100 capable
- Improved Handling
- Improvements on BAT compliance

Acknowledgements

- All Sponsors
- Keweenaw Research Center/SAE International
- University of Wisconsin-Madison College of Engineering
- Advisors
 - Ethan Brodsky
 - Glenn Bower



Head Flowbench Data

Piston Data

	Rotax	Honda
	Rotax	Tioliua
	Stock	Modified
Diameter [mm]	74	75
Wrist Pin Diameter [mm]	17	17
Wrist Pin Location [mm] (relative		
to compression ring)	28	25.5
Compression Ring to Deck Height		
[mm]	5.5	5.12
Mass [grams]	254.5	219.36
Bowl Size (cc)	5	5.15
Skirt Length from bottom of Wrist		
Pin [mm]	9.6	6.4