

University of Wisconsin-Madison

SAE Clean Snowmobile Challenge Design Presentation 2015

Presenters: Saager Paliwal and Michael Solger

DESIGN PROCESS AND ENGINE SELECTION

Design Considerations:

University of Wisconsin SAE Snowmobile Team

Survey of 25 Wisconsin Snowmobile Clubs

- Customers Want:
 - Trail Handling
 - Fuel Economy
- Historical Best Sellers
 - Ski-Doo Rev XP 600 SDI
 - Polaris Rush 600

Chassis Selection

2013 Ski-doo MXZ Sport

- Lightweight
- Rider-forward ergonomics
- SC-5 suspension
- Cost-effective

SAE Snowmobile Team

Focus Points:

- Fuel Economy
- Engine Out Emissions

Base Snowmobile	Power (kW)	Weight (kg)	Fuel Economy	Emissions g/kW-hr)		
			(km/L)	HC	CO	NOx
Ski Doo ACE 600	42	40	12.3	8	90	N/A
Ski Doo ACE 900	67	55	10*	8	90	N/A
Ski Doo 1200 4tec	97	64	7.2	6.2	79.9	N/A
Polaris FST	97	62	7.6	9	116	N/A

Engine Selection

Turbocharged Rotax ACE 600

Engine Type	Four Stroke		
Cooling	Liquid		
Cylinders	2		
Displacement	600 cc		
Bore x Stroke (mm)	74 x 69.7		
Ignition	Custom		
Exhaust	Custom 2-into-1		
Fueling	EFI		
Compression Ratio	12:01		

SAE Snowmobile Team

Turbocharger Choice

Garrett GT1241

- 37-90 kW applications
- External wastegate with closed loop electronic boost control
- Benefits:
 - Improved efficiency
 - Increased power when needed

Miller Cycle

- Miller cycle operation achieved with late intake valve closing
- Optimized valve timing
- Turbocharger used to compensate for power loss of Miller cycle
- Reduced pumping losses at part load
- Increased Brake Efficiency of 6%

Engine Management

- Woodward/Mototron PCM565
 - Automotive/Marine environments
 - -40°-130 °C
 - 18 g Shock Load
- Up to 3 Meters Underwater
- MATLAB/Simulink engine modeling
- MotoHawk automatic code generation
- Three way switching algorithm

Vehicle Calibrations

- Deceleration Fuel Cut and Throttle Curve
- Improved Transient Behavior
 - Increased boost
 - Spark Timing
- Better Handling through New Shocks

ENGINE OPTIMIZATION: ROOT CAUSE ANALYSIS

Engine Calibration

- DYNOmite water brake dyno
- Heated wideband O₂ sensors
- Exhaust thermocouples
- In cylinder pressure transducers
- Calibrated:
 - Spark advance
 - Fuel Injection Quantities
 - Tuned Intake Manifold Geometry
 - Closed loop fueling
 - Throttle control

Cylinder Filling Imbalance

- Correct cylinder filling imbalance with new intake manifold geometry.
 - Stock manifold designed for N/A
 - 0, 540 firing order "root cause"

Root Cause Analysis

ENGINE OPTIMIZATION: MODEL IMPROVEMENTS

Correlation

Optimization Parameters

Optimization Parameters

- Balanced until 5000rpm
- VE suffering at higher speeds

Effect of Valve Angle

Clean Quiet FAST

2014

2015

SAE Snowmobile Team

EMISSIONS AND NOISE REDUCTION

Engine Emissions

	Bucky Ace Turbo 600	Stock [5]
CO (g/kW-hr)	8.1	90
HC (g/kW-hr)	0.3	8
NOx (g/kW-hr)	1.11	N/A
E-Score	207.04	190

SAE Snowmobile Team

Engine Emissions

Wide Band O₂ Sensor

Three Way Catalyst Specifications W. C, Heraeus GmbH Manufacturer Diameter 70 mm 149 mm Length Foil thickness 0.03 mm Emitec SuperFoil® Substrate **MetalHoneycomb** Density 600 cpsi Platinum 11.1 g/ft3 Loading Palladium 55.6 g/ft3 Rhodium 8.3 g/ft3

Noise Reduction

- LizardSkin Tunnel Liner
- Belt Drive
- Catalyst and Turbocharger
- Sound Attenuation Material
- Modified Muffler 72 dB

Lizard Skin Tunnel Liner

Bucky Ace Turbo 600

- Ultra Quiet
- 20+ mpgge
- Improved Handling
- Electric Start
- BAT Compliant

Acknowledgements

- All Sponsors
- Keweenaw Research Center/SAE International
- University of Wisconsin-Madison College of Engineering
- Advisors
 - Ethan Brodsky
 - Glenn Bower

Miller Cycle

Fraction of pumping losses:

Model Validation

Cylinder Pressure

