

University of Wisconsin Madison

2012 SAE Clean Snowmobile Challenge

Design Presentation

Presented by:

Shawn Spannbauer
Derek Landwehr

Design Considerations:

Market Survey

 Survey at Vintage Oval Races in Three Lakes, WI Approximately 120 surveys

- Customers Want:
 - Trail Handling
 - Acceleration
- Historical Best Sellers
 - Ski-Doo Rev XP 600 SDI
 - Polaris Rush 600

Bucky Rush How it Appeals to Snowmobilers

Ultra Quiet

Increased Fuel Economy

20+ mpgge Flex Fuel

Improved Acceleration Cruise Control Capable Electric Start

BAT+ Compliant

2011 Rush Pro-R Chassis 105 peak hp operating on E85

Dealer & Outfitter Perspective

Sales

- Cleaner/Quieter Performance Model
- Better Fuel Economy, BAT Compliant
- Maintenance
 - Integrated Catalyst/Muffler Bolt-on Replacement
 - Plug and Play Flex-Fuel Intake/Fuel System
 - ETC, Flex Fuel Sensor
- Rider Comfort
 - OEM Seat, Handlebars, Suspension, Reduced Noise
- Novice Snowmobiler Operation
 - OEM Controls

Chassis Selection

- Primary goal of improving fuel economy
- Vehicle weight is a major contributor to poor efficiency
- Rider forward ergonomics
- Progressive rate rear suspension

Engine Selection

- Primary: engine-out emissions
- Secondary: high power-to-weight ratio

	Power (kW)	Weight (kg)	Fuel Economy (km/L)	Emissions (g/kW- hr)		
				HC	СО	NOx
Polaris FST	112	64	7.2	6.2	79.9	N/A
Ski-Doo 4-Tec 1200	97	62	7.6	9	116	N/A
Ski-Doo ACE 600	42	40	12.3	8	90	N/A*

Turbo Charged Weber MPE 750 with Automotive Camshaft

Engine Type	Four Stroke	
Cooling	Liquid	
Cylinders	2	
Displacement	750 cc	
Bore x Stroke (mm)	85 x 66	
Ignition	Bosch	
Exhaust	Single	
Fueling	EFI	
Compression Ratio	9:1	

Engine Control and and Emissions Reduction

Engine Management

Woodward/Mototron PCM555

Ratings:

Automotive/Marine Environments

-40°- 130 °C

18 g Shock Load

Up to 3 Meters Underwater

MATLAB/Simulink Engine Modeling
MotoHawk Automatic Code Generation

Flex Fuel Sensor

Continental Flex Fuel Sensor

Reports ETOH Content & Fuel Temperature

Engine Calibration

- DYNOmite Water-Brake Dyno
- Horiba CO & CO₂ NDIR Analyzer
- Heated wide-band O₂ sensor
- Chemiluminescent NOx Analyzer
- Exhaust Thermocouples

- Calibrated Volumetric Efficiency within 1% of Stoichometric
 - 160 calibration points
 - Increments: 500 rpm, 0.1 PR
 - Each within ±0.01λ (open-loop)
- Feedback from O₂ Sensor

Catalytic Emissions Reduction

University of Wisconsin SAE Snowmobile Team

- Lean/Rich Switching maximizes threeway catalytic efficiency
- Exhaust system re-designed to minimize weight, engine back-pressure and risk of pre-catalyst leaks

Manufacturer	W.C Heraeus GmbH	
Diameter	70mm	
Length	149mm	
Substrate	SuperFoil® Metal Honeycomb	
Density	600 cpsi (cells per square inch)	
Loading	Platinum 11.1 g/ft ³ Palladium 55.6 g/ft ³ Rhodium 8.3 g/ft ³	

Emissions Results

2012 Emissions Testing Results

Up to 96% reduction from stock

Fuel Economy Improvements

Driveline Efficiency Testing

 Tested 121" vs. 128" using electric snowmobile

- Found a 22% reduction in power required to drive at 25 mph when using 121"
- Studs reduce efficiency by 4% at 25 mph. This is weighted against their positive aspects.

Track Speed [mph]

Weight Reduction

Change	Reduction (kg)		
Chassis	26.88		
Lithium battery	3.89		
Pre-studded track	3.73		
Total Savings	34.5		
Final Weight	290.5		

Noise Emissions

Total Sound Reduction

 Measured sound level of based on pass-by testing - SAE Standard J192

- J192 Limit 78 dBA maximum
- Stock Muffler 76 dBA
- Bucky Rush 72 dBA

Muffler Design

Balance between volume and backpressure

 Target Peaks in Frequencies to reduce sound

Questions?

Key Design Points

- Lightweight Chassis
- Custom exhaust
- Woodward/Mototron control system
- Electric Throttle Control
- Ethanol compatible fuel system
- Flex-fuel sensor
- Studded track

Emissions and Standards

Standards	НС	СО	E-number
EPA Phase 1 ('06-'09)	<100	<275	75
EPA Phase 2 ('10-'11)	<75	<275	91
EPA Phase 3 ('12)	<75	<200	110
EPA BAT	<15	<120	170
SAE CSC 2011	<90	<275	100

Vehicle	НС	СО	E-number
UW CSC 2009	0	5	208
BRP 600ACE (4-stroke)	8	90	182
BRP 800 ETEC (DI 2-stroke)	?	?	?

Closed-loop operation after cold start

Why Not DI2S?

University of Wisconsin SAE Snowmobile Team.

Emissions Testing Modes

	Engine Speed (rpm)	Torque (N-m)	Power (kW)
Mode 1 (WOT)	5500	105.9	61.0
Mode 2 (85%)	4675	54.0	26.4
Mode 3 (75%)	4125	34.9	15.1
Mode 4 (65%)	3575	20.1	7.5
Mode 5 (idle)	1500	0.0	0.0

Customer Survey

Drive Shaft

Flex Fuel Control Algorithm

Lean/Rich Oscillation Strategy

