
Kettering University

2008 Clean Snowmobile Challenge

Kettering Yamaha Phazer GT

Design Goals

- Significantly reduce exhaust emissions
- Decrease noise output from all possible sources
- Maintain reliability and practicality
- Keep increased costs to a minimum to make design more viable for production

E85 Conversion Methodology

The 2008 CSC rules mandate the use of a bio-fuel blend, the benefits of such a conversion are:

- Cleaner exhaust emissions
- Higher power potential
- Portion of fuel is derived from a renewable resource

Engine Specifications

- 499 cc (30.5 in³)
- Parallel twin cylinder
- 4-stroke; 5 valves/cylinder
- 12.4:1 compression ratio
- Naturally aspirated
- Converted to run E85

 $\begin{array}{c} 1 & 2 \\ \hline & 0 \text{ degrees} \end{array} \end{array} \begin{array}{c} 1 & 2 \\ \hline & 1 & 2 \\ \hline &$

Yamaha 499cc 2-cylinder 4-stroke SI Engine Cycle

Engine Control Units

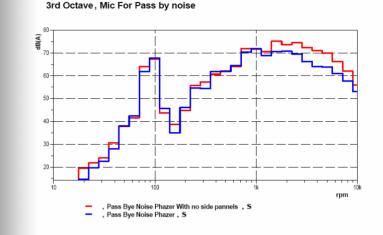
- The standard Yamaha controller built by Mitsubishi was retained for spark control, as well as to operate the stock gauges
- A BigStuff3 GEN3 controller with closed loop fuel control was integrated to control the fuel injection system

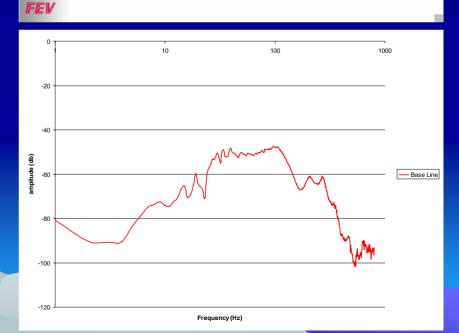
Emissions Testing

 Baseline emissions testing was done in stock configuration as a benchmarking exercise. Testing utilized the Horiba Mexa 7100 Exhaust Gas Analyzer in Kettering's Engine Test Cell.

Mode	Engine Speed (rpm)	Torque (ft lb)	CO(H) (% vol)	CO2 (% vol)	O2 (% vol)	THC (ppmC)	NOx (ppm)
1	10500	50	9.006	8.974	0.562	6524.6	462.8
2	8900	25.5	2.798	12.854	0.584	3199.8	2773.6
3	8000	16.5	8.048	9.88	0.272	2908.2	366
4	6860	9.5	6.024	11.088	0.36	2718.2	251.4
5	2400	0	7.502	9.688	0.876	7357	60

Emissions Reducing Enhancements





- Three-way catalytic converter
- Wide band O₂ sensor
- Use of a fuel controller that can operate closed loop for precise control of air-fuel mixture
- E85 also reduces emissions from stock output levels

Noise Testing

- Preliminary pass-by testing was done on the stock configuration to determine the major sources of noise
- This information pinpointed several areas, including the tunnel and side panels

Noise Reduction

- Neoprene rubber side skirts were installed to isolate track noise
- Noisekiller[™] coating was used to coat the tunnel
- Various types of sound deadening mat were used in the side panels

Muffler Design

- The stock Yamaha muffler was retained
- A glass pack muffler was placed in series downstream
- The exhaust exits into the tunnel to further reduce exhaust noise

Body Modifications

- A replacement side panel was fabricated from glass fiber reinforced plastic to accommodate the clutch guard and sound deadening material
- Aluminum shielding was installed at the rear of the snowmobile to further isolate exhaust noise

Final Overview

- Exhaust emissions
- Decrease noise output
- Maintain reliability and practicality
- Keep increased costs to a minimum

- Runs on E85 with catalyst
- Twin mufflers and sound deadening materials
- Completed tech inspection and endurance run
 - Dual ECU's substantially increased cost, but could be replaced with single for production

The 2008 Kettering University Clean Snowmobile Challenge Team would like to give a special thanks to the following sponsors:

