University of Idaho Two-Stroke Direct Injection Snowmobile

Presented By Andrew Hooper & Austin Welch

Overview

- Design goals & target audience
- Design strategy
- Chassis and engine modifications
- Testing strategies
- Testing results
- Summary
- Questions

UICSC Design Goals

- Create a National Park certified two-stroke snowmobile
 - E-score >170, J-192 score <74 dBA
- Improve our high-ethanol fuel economy (previously 13mpg on E55 2009)
- Maintain stock power
- Maintain two-stroke riding experience
 - High power density, lightweight
- Deliver OEM level packaging
- Minimize cost by using stock Skidoo components and low cost modifications.

Target Audiences

Dealer/Outfitter

- Low maintenance
 - Less scheduled maintenance means less dealer expenses
- High performance
 - Easy to sell
- Environmentally conscious
 - Meets strictest emissions standards

Rider

- Electronic total loss oil system
 - Comparable to 4-stroke
 - consumption
 - no oil changes
- Fuel economy
 - 18 mpg means more fun between fill-ups
- Lighter than 4-stroke counterparts
- Power
 - Over 100 hp, a top rider priority

Design Strategy

- Clean & Fuel Efficient
 - E-Tec direct fuel injection
 - Flex fuel E20-E29
 - Electronic oiling
 - 3 way catalyst
- Quiet
 - Reduce noise through sound insulation
 - Block off or re-route vents
 - Thermally activated vents
- Rider Friendly
 - Light weight chassis
 - Factory fit and finish
 - Very low maintenance

Chassis and Engine

Chassis

- 2009 Skidoo MXZ REV-XP
 - Performance oriented
 - Proven rider comfort
 - Improved handling

Engine

- Rotax 593cc H.O. Two-Stroke
 - E-Tec direct injection
 - RAVE 2 variable exhaust with tuned pipe
 - High power-to-weight ratio

Chassis Modifications

- Larger XR (4-stroke Skidoo) body panels
- Sound deadening material
 - In body panels
 - On tunnel
- Thermally activated vents
 - Hood scoops to force cooling
- Air-box modified to intake from engine compartment

Thermal Vent Designs

Vents are triggered using a thermal switch typically used for an automotive auxiliary fan

Linear actuator is used to actuate the vents

Coherence Testing

• Percentage of a local contribution to the overall sound measurement.

•Used to test sound insulation materials and modifications.

Coherence Testing Graphs

Un-damped Plastic Sample Sheet

Multi-layered foam on plastic sheet

Sound Level Testing J-192

Control snowmobile was used to normalize for different conditions
 Sound Level Reduction

- NPS goal of <74dBA not reached
 - Sound meter used reads typically 4dB higher than Head Acoustics

Engine Modifications

• Cylinder head

- Improved combustion chamber geometry reduces emissions and improves fuel efficiency
- Stock compression ratio
- Aristo 3-way catalytic converter

 $\lambda = 1$

Engine Tuning and Calibration

Borghi & Saveri Eddy Current Dyno with Superflow Controller

Survivability
Ride-ability
Fuel Economy
Power
Emissions

Engine Calibration Strategy

- Started with existing calibration for E10
- Overall correction was calculated based on energy content of E25
- Fine tuned mode points and cruise
- Tuned for catalyst back pressure
- Testing with both E20 and E29 showed that the E25 calibration was flexible enough for fuel range

Emissions Results

Engine Results

- Average BSFC 355 g/kW-hr
 - 372 g/kW-hr in 2010
- E-Score of 177
 - Goal of 170 (National Park Standard) met
 - Meets requirements for CO and HC+NO_x
- Achieved an average 105 horsepower during mode 1 emissions

Summary

- Goals met:
 - Meets NPS exhaust emissions standards
 - Wet weight ~580 lbs
 - 105hp compared to 110hp stock
 - Increased fuel economy from 13 to 18mpg
- Goals not met:
 - NPS sound emissions (EPA standard of 78dBA met)
- Consumers want a powerful, agile, and fuel efficient machine and the UICSC snowmobile is an economical response to this demand

Thank You

MSRP Breakdown

- Base sled price \$10099
- UICSC sled price ~\$14000
- Major contributors
 - Ice ripper track \$550*1.5=\$850
 - Stock track \$488
 - Skis \$244*1.5=\$366
 - Stock skis \$125
 - Head light \$195*1.5=\$292
 - Stock lights ~\$100

Two Stroke Verses Four Stroke

Emissions Results

Experimental Work

Skid damper testing

Custom muffler designed with two Hushpower mufflers and integrated catalyst.

Experimental Work

Air Injection to improve catalyst performance

Efficiency testing of bogie wheels and

