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• Meeting the Challenge – Emissions Standards Worldwide

• History of Catalytic Converters and Government Legislation

• Emissions Durability in Recreational Vehicles

• Mechanisms of Catalyst Deactivation

• History of Demonstrating Durability of Emission Systems

• Recreating Engine out Conditions Cost Effectively – Catagen

• Performance Testing/Characterization of Catalysts

• Conclusion

Contents
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Meeting the Challenge

• To Meet Emissions Standards Worldwide
• Requires effective after-treatment (Catalytic Converter Systems) with 

reductions of :
• 95% for US LEV 1 
• 96% for Euro 4
• 98% for US ULEV 2
• >99% for US SULEV

• Durability of Emissions Applied
• LEV & ULEV at 50,000 miles 
• U.S. Tier2 = LEV2 and ULEV2 at 120,000 miles
• SULEV at 120,000 miles (PZEV at 150,000 miles)

• SULEV & PZEV are toughest worldwide
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OyHxCOOxidationFastHC PdPt
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Equation 1.3
The Basics - TWC

Basic Global Reactions in a TWC

Figure 3: Three-Way Catalytic Converter in 
Open Can With Matting 

Pd
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Fresh Catalyst

Figure 4: Conceptual Model of Catalytic Sites on 
Washcoat Bonded to a Monolith

Figure 5: SEM Micrograph of Fresh 
Catalyst
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Factors Affecting Catalyst Deactivation:

– Temperature effects on catalyst – Thermal 
Deactivation US-EPA Recognise this contributing 95% 
of total degradation 

– Poisoning of Catalyst (Contaminants in Fuel)

– Fouling of Catalyst (Combustion Related 
Contaminants – Soot/Oil)

– Structural breakdown of catalyst (Mechanical Shock)

Catalyst Deactivation
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Figure 6: Conceptual - Phase Changes in Washcoat –
Thermal Effects

Figure 7: SEM Micrograph Alpha 
Alumina, α-Al2O3 

Thermal Effects
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Figure 8: Conceptual -Thermal Sintering of Precious 
Metal

Figure 9: TEM Micrograph of PM 
Sintering

Thermal Effects



12

Fouling of Catalyst

Figure 10: Conceptual –Fouling /Masking of Precious 
Metal – Heavy Contaminants – Unburnt Oil Etc
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Trace Contaminants Found in Fuel – Cause 
Alloying and Poisoning of Precious Metals:

• Phosphorous (P) Sulphur (S)

• Chlorine (Cl) Arsenic (As)

• Selenium (Se) Tellerium (Te)

• Sodium (Na) Calcium (Ca)

• Lead (Pb) Tin (Sn)

• Antimony (Sb) Mercury (Hg)

• Cadmium (Cd)

Catalyst Poisoning
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Equating Fleet Data to Demonstrate Catalyst 
Durability for Legislation

Fleet Data

Vehicle Fleet 
Histogram Data –

Catalyst 
Temperatures

Equated to High 
Temperature Engine 

Test Cell Aging –
Typically 800-1100C

USING US-EPA BAT EQUATION
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Application of BAT 

• Basic Integral Equation

• Equivalent Bench Time

Where th is the time at temperature Tv

• This can be applied to any drive cycle or other test

• tI is then the temperature time integral characteristic of aging

• From this a new aging time te can be calculated at reference temp Tr

• This can also be used to match a specific bench ageing profile  where 

• For example 2500 hrs of FTP drive cycle on a PZEV vehicle matches to 
80hrs of bench ageing at 800ºC
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Snowmobile Emissions

Phase Model year Phase-in Emission Maximum 

(percent) standards limits
HC CO HC CO

Phase 1 2006 50 100 275
Phase 1 2007–2009 100 100 275
Phase 2 2010 and 2011 100 75 275
Phase 3 2012 and later 100 see equation 150 400

100100
400

1100
150

1
COHC

EmissionsTotal

%100
400150

COHC
EmissionsTotal

From Regs

Or more simply

EPA Title 40 Part 1051: Control of Emissions from Recreational Engines and Vehicles
EPA: 40 CFR Parts 60, 63, et al. Control of Emissions from Nonroad Spark-Ignition Engines and Equipment; 
Proposed Rule  2007 - Emissions Durability Proposal
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 To Meet Ever Increasing Global Endurance Emissions 

Targets

 Catalysts need to be Constantly Improved

 Understanding of Deactivation Important to Assess And 

Improve Catalyst Formulations

 In House Endurance Testing Difficult and Costly

 On Road Catalyst Ageing – Dependant heavily on 

driving traits

 Dynamometer Ageing – Useful but Expensive!

The Issues:

The Problem



1818

The Problem

From: Emissions and Health Unit Institute of Environment and Sustainability EC-JRC Ispra



19

Chamber Furnace Ageing:

Alternative Solutions

 Thermal Ageing

 Very Difficult to Equate to 

Road Ageing

 No Flow of Gases – Mostly 

carried out in air causes high 

degradation

 Low Cost Examples:

QUB Chamber Furnace 
Ageing
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Total Synthetic Gas Ageing:

Alternative Solutions

 Typical Synthetic Gas Reactors

 Gas Exhausts to Vent

 Very Costly

Examples:

Published work shows Ford, GM, JM and 

Research Institutions have all 

experimented with this

SAE 960795
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FOCAS Burner Based 

Ageing:

Alternative Solutions

 Spin Out Technology from 

SWRI – Texas

 Commercially Available

 Cost Saving Benefits

http://www.swri.org/4org/d03/engres/focas/aging/default.htm
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 FEV (Germany), Ford (US), and Schenck (Now Horiba) 

have all experimented with Burner Technology

 Schenck had offered it as a product in the past

 Queen’s University, Belfast – Experimented with 

Burners in Late 90’s – Control Issues (MSc Degree)

 Thermal Control Issue – Decided to Go Down another 

Research Route

Alternative Solutions

Other Burner Examples
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Making economic and 

environmental sense 

of catalyst ageing
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Labcat Aging Cat
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Propane and Oxygen Concentrations
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Air Fuel Ratio at At Catalyst Inlet
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Aging Results
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Aging Results
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Aging Results
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Thermal Shock
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Performance 
Testing
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CO Lightoff Sample
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C3H8 Lightoff Sample
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OSC Test Sample
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LABCAT 20g/sec Flow

PRODUCT RANGE

TESTCAT 50g/sec 

MAXCAT 200g/sec
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MAXCAT EXAMPLE

 Removes the need for Gasoline & Energy Efficient!

Gasoline Energy 95% Electrical 5% Propane

 Catagen systems require 80% less energy = Cost 
Savings!  Typical Reduction in Operating Cost 70-85%

ENERGY

Coolant 

Heat
Useful 

Work

Exhaust Heat
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OTHER BENIFITS

 No Need for Engine Test Bed Facilities – Laboratory 
Environment (Cost)

 Estimated 1 Technician to Operate 3 Catagen Machines –
Personnel Reduction

 Remote monitoring facilities/IPad Applications/Remote 
Alarms – SMS/Email

 Aging and Performance Carried out on Same System

 Highly Repeatable Tests, Easy Experimentation & Analysis

 98% CO2 Reduction at Source

 Safety TUV Certification, CE Marking, NFPA 79 
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SUMMARY

 Catalyst Durability a Key Component Global Air Quality

 Legislation:

Faster Light-off Requirements

Lower Emissions Levels

Longer Durability Requirements

Expanding into New Geographical Territories

Expanding into Other Engine Applications (Beyond Auto)

In Catagen – Developed a tool to aid the industry
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Thanks For 
Listening

‘And Good Luck to 
All the Teams 

Participating in SAE 
2011’


